metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jozef Kožíšek,^a* Jesús García Díaz,^b Marek Fronc^a and Ingrid Svoboda^c

^aDepartment of Physical Chemistry, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, ^bDepartment of Materials, Technological Institute of Morelia, Michoacán, Mexico, and ^cStrukturforschung, FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany

Correspondence e-mail: kozisek@cvt.stuba.sk

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.025 wR factor = 0.064 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography

Printed in Great Britain - all rights reserved

catena-Poly[[bis(4-aminopyrimidine- κN^1)copper(II)]-di- μ -dicyanamido- $\kappa^4 N^1$: N^3]

In the title octahedral complex, $[Cu{N(CN)_2}_2(ampym)_2]_n$ (ampym is 4-aminopyrimidine, $C_4H_5N_3$), the Cu atom is located on an inversion centre and is coordinated in the equatorial plane by two dicyanamide nitrile N atoms and two N atoms from ampym ligands [Cu-N = 1.972 (2) and 2.001 (2) Å, respectively], and in the axial positions by another two dicyanamide nitrile N atoms, at 2.633 (2) Å. Neighbouring Cu atoms are connected *via* double dicyanamide bridges to form a one-dimensional infinite chain.

Comment

In coordination compounds of Cu^{II} and Cu^{I} , the dicyanamide (dca^{-}) anion, $(N(CN)_2)^{-}$, exhibits a rich variety of bonding modes. It can coordinate either in a monodentate manner (*e.g.* Burčák *et al.*, 2004) or, more typically, in a bidentate manner [two types of binding: mainly through two nitrile N atoms (Potočňák *et al.*, 2002), but also through one amide and one nitrile N atom (Mohamadou *et al.*, 2003)], or even in a tridentate manner in the case of Cu^{I} (Batten *et al.*, 2000).

4-Aminopyrimidine and derived neutral ligands can also be coordinated either in monodentate mode (*e.g.* Manson *et al.*, 2003) or in bridging mode, as recently reported for $Cu(HCO_2)_2$ (pyrimidine) (Manson *et al.*, 2005). In the title compound, (I), the bridging mode of dca⁻ ligands seems to be preferred to the bridging mode of 4-aminopyrimidine.

The geometry around the Cu^{II} ion in (I) is tetrahedrally elongated octahedral (the Cu atom lies on an inversion centre), with the equatorial plane formed by two nitrile N

Received 22 April 2005 Accepted 12 May 2005

Online 21 May 2005

Figure 1

The atom-numbering scheme of the title compound, with displacement ellipsoids at the 50% probability level [symmetry codes: (i) -x, -y, -z; (ii) x, 1 + y, z; (iii) -x, -1 - y, -z].

atoms from dicyanamides and two other N atoms from neutral ligands. Axial positions are occupied by another two nitrile dicyanamide N atoms. Neighbouring Cu atoms are connected *via* double dicyanamide bridges to form a one-dimensional infinite chain in the *b*-axis direction (Fig. 1).

In the Cambridge Structural Database (CSD; Version 5.26; Allen, 2002), there are four crystal structures of the type $[Cu\{N(CN)_2\}_2L_2]$ (L = neutral N-donor ligand), with the chromophore [CuN₆], the neighbouring Cu atoms connected via double dicyanamide bridges and with an R value lower than 0.05. In two of them [CSD refcodes KEQWIM (van Albada et al., 2000) and MEBFEE (Jensen et al., 1999)], there are two dca⁻ ligands coordinated in the equatorial plane (Cu-N = 1.972 and 1.966 Å) and two others in axial positions (Cu-N = 2.417 and 2.420 Å). Cu-L distances are 2.078 and 2.051 Å, respectively. In the present crystal structure, (I), the corresponding distances are Cu1-N9 1.972 (2) Å, Cu1-N13 2.633 (2) Å and Cu1-N2 2.001 (2) Å. In the crystal structure EDALAW (van Albada et al., 2001), the Cu atom lies on a general position with corresponding Cu-N distances 1.983, 1.988, 2.313, 2.967, 2.008 and 2.023 Å, respectively. In the crystal structure PAHWAX (Luo et al., 2004), all dca- ligands are found in the equatorial plane (Cu-N = 2.003 and 2.005 Å) and the neutral quinoxaline ligand is coordinated in the axial position (Cu-N = 2.479 Å).

The ampym rings in the unit cell of (I) are aligned parallel, approximately perpendicular to the *b* axis, so the distance between these rings is larger than 3.6 Å and does not indicate any π - π interaction. The crystal structure is stabilized by hydrogen bonds (Table 2), which, together with double dicyanamide bridges, form a three-dimensional network (Fig. 2).

Inspection of the interatomic distances (Table 1) shows an extended delocalized π -system N11/C10/N9/Cu1/N2/C3/N4/C5/N8. The bond length N4–C3 [1.320 (2) Å] is clearly shorter than that expected for a single bond (for example, 1.349 Å in imidazole). A similar feature was observed for the free ligand 4-aminopyrimidine (Van Meervelt & Uytterhoeven, 2003), where, *via* hydrogen bonds, two one-dimen-

Figure 2

Packing diagram of (I), viewed along the *b* axis. Hydrogen-bond interactions are indicated by dashed lines [symmetry codes: (iv) 1 + x, 1 + y, 1 + z; (v) x, 1 + y, 1 + z].

sional infinite chains are formed along the *b* axis $(N_{ampym} \cdots H_{amine} \text{ and } N_{ampym} \cdots H_{amine} - N_{amine}$ separations and angles: 2.100/2.134 Å and 176/174° for two independent molecules).

Experimental

A solution of 2.0 mmol of $CuSO_4$ in water (3 ml) was mixed with a solution of 4.0 mmol of $NaN(CN)_2$ in water (10 ml) and with a solution of 4.0 mmol of ampym in ethanol (10 ml). After standing for a few days, blue crystals were isolated (yield: *ca* 10%).

Crystal data

-	
$[Cu(C_2N_3)(C_4H_5N_3)]$	Z = 1
$M_r = 385.86$	$D_x = 1.676 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 6.260 (1) Å	Cell parameters from 2020
b = 7.248(1) Å	reflections
c = 9.451 (2) Å	$\theta = 3.1-29.2^{\circ}$
$\alpha = 105.29 \ (3)^{\circ}$	$\mu = 1.45 \text{ mm}^{-1}$
$\beta = 100.19 (3)^{\circ}$	T = 293 (2) K
$\gamma = 106.27 \ (3)^{\circ}$	Block, blue
$V = 382.2 (1) \text{ Å}^3$	$0.27 \times 0.25 \times 0.14 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur CCD	1705 independent reflections
diffractometer	1636 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.024$
Absorption correction: analytical	$\theta_{\rm max} = 27.5^{\circ}$
face-indexed (CrysAlisRED;	$h = -8 \rightarrow 8$
Oxford Diffraction, 2003)	$k = -9 \rightarrow 7$
$T_{\min} = 0.767, \ T_{\max} = 0.891$	$l = -12 \rightarrow 12$
2818 measured reflections	

metal-organic papers

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0264P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 0.2243P]
$wR(F^2) = 0.064$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\rm max} < 0.001$
1705 reflections	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
115 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Cu1-N2	2.001 (2)	C7-C6	1.352 (3)
Cu1-N9	1.972 (2)	C5-N8	1.334 (3)
Cu1-N13 ⁱⁱⁱ	2.633 (2)	C5-C6	1.395 (3)
N2-C3	1.330 (2)	N9-C10	1.143 (2)
N2-C7	1.350 (2)	N11-C10	1.294 (2)
N4-C3	1.320 (2)	N11-C12	1.301 (2)
N4-C5	1.342 (3)	C12-N13	1.146 (2)
N9-Cu1-N2	90.91 (6)	N9-Cu1-N13 ⁱⁱⁱ	90.0 (1)
N2-Cu1-N13 ⁱⁱⁱ	89.3 (1)		
Symmetry code: (iii) -r	-1 - v - 7		

Symmetry code: (iii) -x, -1 - y, -z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$		
$ \begin{array}{c} \hline \mathbf{N8} - \mathbf{H8}A \cdots \mathbf{N11}^{\mathrm{iv}} \\ \mathbf{C6} - \mathbf{H6}A \cdots \mathbf{N11}^{\mathrm{v}} \end{array} $	0.86 0.93	2.378 2.554	3.132 (3) 3.440 (3)	147 159		

Symmetry codes: (iv) 1 + x, 1 + y, 1 + z; (v) x, 1 + y, 1 + z.

H atoms were positioned geometrically and treated as riding atoms, with C-H and N-H distances constrained to 0.93 and 0.86 Å, respectively, and U_{iso} (H) values set at $1.2U_{eq}$ of the carrier atom.

Data collection: *CrysAlisCCD* (Oxford Diffraction, 2001); cell refinement: *CrysAlisCCD*; data reduction: *CrysAlisRED* (Oxford Diffraction, 2003); program(s) used to solve structure: *SHELXS97*

(Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL97*.

The authors thank the Grant Agency of the Slovak Republic (grant Nos. VEGA 1/2449/05 and COSNET 545.03-P).

References

- Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2001). Acta Cryst. E57, m421-m423.
- Albada, G. A. van, Quiroz-Castro, M. E., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2000). *Inorg. Chim. Acta*, 298, 221–225.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Batten, S. R., Harris, A. R., Jensen, P., Murray, K. S. & Ziebell, A. (2000). J. Chem. Soc. Dalton Trans. pp. 3829–3836.
- Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Burčák, M., Potočňák, I., Baran, P. & Jäger, L. (2004). Acta Cryst. C60, m601– m604.
- Jensen, P., Batten, S. R., Fallon, G. D., Hockless, D. C. R., Moubaraki, B., Murray, K. S. & Robson, R. (1999). J. Solid State Chem. 145, 387–393.
- Luo, J., Liu, B.-S., Zhou, X.-G., Weng, L.-H., Li, Y.-R. & Wu, H.-X. (2004). Acta Cryst. C60, m520–m522.
- Manson, J. L., Gu, J., Schlueter, J. A. & Wang, H.-H. (2003). *Inorg. Chem.* 42, 3950–3955.
- Manson, J. L., Lancaster, T., Chapon, L. C., Blundell, S. J., Schlueter, J. A., Brooks, M. L., Pratt, F. L., Nygren, C. L. & Qualls, J. S. (2005). *Inorg. Chem.* 44, 989–995.
- Mohamadou, A., van Albada, G. A., Kooijman, H., Wieczorek, B., Spek, A. L. & Reedijk, J. (2003). New J. Chem. pp. 983–988.
- Oxford Diffraction (2001). CrysAlisCCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Oxford Diffraction (2003). CrysAlisRED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Potočňák, I., Burčák, M., Massa, W. & Jäger, L. (2002). Acta Cryst. C58, m523– m528.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Van Meervelt, L. & Uytterhoeven, K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 481–482.