Acta Crystallographica Section E

Structure Reports
 Online

catena-Poly[[bis(4-aminopyrimidine- κN^{1})-copper(II)]-di- μ-dicyanamido- $\left.\kappa^{4} N^{1}: N^{3}\right]$

ISSN 1600-5368

Jozef Kožíšek, ${ }^{\text {a* }}$ Jesús García Díaz, ${ }^{\text {b }}$ Marek Fronc ${ }^{\text {a }}$ and Ingrid Svobodac

${ }^{\text {a Department of Physical Chemistry, Slovak }}$ University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic,
${ }^{\mathbf{b}}$ Department of Materials, Technological Institute of Morelia, Michoacán, Mexico, and ${ }^{\mathrm{c}}$ Strukturforschung, FB11 Material- und Geowissenschaften, Technische Universität Darmstadt, Petersenstraße 23, D-64287 Darmstadt, Germany

Correspondence e-mail: kozisek@cvt.stuba.sk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.025$
$w R$ factor $=0.064$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title octahedral complex, $\left[\mathrm{Cu}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2}(\text { ampym })_{2}\right]_{n}$ (ampym is 4-aminopyrimidine, $\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}$), the Cu atom is located on an inversion centre and is coordinated in the equatorial plane by two dicyanamide nitrile N atoms and two N atoms from ampym ligands $[\mathrm{Cu}-\mathrm{N}=1.972$ (2) and 2.001 (2) \AA, respectively], and in the axial positions by another two dicyanamide nitrile N atoms, at 2.633 (2) \AA. Neighbouring Cu atoms are connected via double dicyanamide bridges to form a one-dimensional infinite chain.

Comment

In coordination compounds of $\mathrm{Cu}^{\mathrm{II}}$ and Cu^{I}, the dicyanamide $\left(\mathrm{dca}^{-}\right)$anion, $\left(\mathrm{N}(\mathrm{CN})_{2}\right)^{-}$, exhibits a rich variety of bonding modes. It can coordinate either in a monodentate manner (e.g. Burčák et al., 2004) or, more typically, in a bidentate manner [two types of binding: mainly through two nitrile N atoms (Potočňák et al., 2002), but also through one amide and one nitrile N atom (Mohamadou et al., 2003)], or even in a tridentate manner in the case of Cu^{I} (Batten et al., 2000).

(I)

4-Aminopyrimidine and derived neutral ligands can also be coordinated either in monodentate mode (e.g. Manson et al., 2003) or in bridging mode, as recently reported for $\mathrm{Cu}\left(\mathrm{HCO}_{2}\right)_{2}$ (pyrimidine) (Manson et al., 2005). In the title compound, (I), the bridging mode of dca ${ }^{-}$ligands seems to be preferred to the bridging mode of 4-aminopyrimidine.

The geometry around the $\mathrm{Cu}^{\mathrm{II}}$ ion in (I) is tetrahedrally elongated octahedral (the Cu atom lies on an inversion centre), with the equatorial plane formed by two nitrile N

Received 22 April 2005 Accepted 12 May 2005 Online 21 May 2005

Figure 1
The atom-numbering scheme of the title compound, with displacement ellipsoids at the 50% probability level [symmetry codes: (i) $-x,-y,-z$; (ii) $x, 1+y, z$; (iii) $-x,-1-y,-z]$.
atoms from dicyanamides and two other N atoms from neutral ligands. Axial positions are occupied by another two nitrile dicyanamide N atoms. Neighbouring Cu atoms are connected via double dicyanamide bridges to form a one-dimensional infinite chain in the b-axis direction (Fig. 1).

In the Cambridge Structural Database (CSD; Version 5.26; Allen, 2002), there are four crystal structures of the type $\left[\mathrm{Cu}\left\{\mathrm{N}(\mathrm{CN})_{2}\right\}_{2} L_{2}\right](L=$ neutral N-donor ligand), with the chromophore $\left[\mathrm{CuN}_{6}\right]$, the neighbouring Cu atoms connected via double dicyanamide bridges and with an R value lower than 0.05. In two of them [CSD refcodes KEQWIM (van Albada et al., 2000) and MEBFEE (Jensen et al., 1999)], there are two dca ${ }^{-}$ligands coordinated in the equatorial plane $(\mathrm{Cu}-\mathrm{N}=1.972$ and $1.966 \AA$) and two others in axial positions $(\mathrm{Cu}-\mathrm{N}=2.417$ and $2.420 \AA) . \mathrm{Cu}-L$ distances are 2.078 and $2.051 \AA$, respectively. In the present crystal structure, (I), the corresponding distances are $\mathrm{Cu} 1-\mathrm{N} 91.972$ (2) $\AA, \mathrm{Cu} 1-\mathrm{N} 13$ 2.633 (2) \AA and $\mathrm{Cu} 1-\mathrm{N} 22.001$ (2) \AA. In the crystal structure EDALAW (van Albada et al., 2001), the Cu atom lies on a general position with corresponding $\mathrm{Cu}-\mathrm{N}$ distances 1.983, $1.988,2.313,2.967,2.008$ and $2.023 \AA$, respectively. In the crystal structure PAHWAX (Luo et al., 2004), all dca ${ }^{-}$ligands are found in the equatorial plane $(\mathrm{Cu}-\mathrm{N}=2.003$ and $2.005 \AA)$ and the neutral quinoxaline ligand is coordinated in the axial position $(\mathrm{Cu}-\mathrm{N}=2.479 \AA)$.

The ampym rings in the unit cell of (I) are aligned parallel, approximately perpendicular to the b axis, so the distance between these rings is larger than $3.6 \AA$ and does not indicate any $\pi-\pi$ interaction. The crystal structure is stabilized by hydrogen bonds (Table 2), which, together with double dicyanamide bridges, form a three-dimensional network (Fig. 2).

Inspection of the interatomic distances (Table 1) shows an extended delocalized π-system $\mathrm{N} 11 / \mathrm{C} 10 / \mathrm{N} 9 / \mathrm{Cu} 1 / \mathrm{N} 2 / \mathrm{C} 3 / \mathrm{N} 4 /$ $\mathrm{C} 5 / \mathrm{N} 8$. The bond length $\mathrm{N} 4-\mathrm{C} 3$ [1.320 (2) \AA] is clearly shorter than that expected for a single bond (for example, 1.349 A in imidazole). A similar feature was observed for the free ligand 4-aminopyrimidine (Van Meervelt \& Uytterhoeven, 2003), where, via hydrogen bonds, two one-dimen-

Figure 2
Packing diagram of (I), viewed along the b axis. Hydrogen-bond interactions are indicated by dashed lines [symmetry codes: (iv) $1+x$, $1+y, 1+z ;(\mathrm{v}) x, 1+y, 1+z]$.
sional infinite chains are formed along the b axis ($\mathrm{N}_{\text {ampym }} \cdots \mathrm{H}_{\text {amine }}$ and $\mathrm{N}_{\text {ampym }} \cdots \mathrm{H}_{\text {amine }}-\mathrm{N}_{\text {amine }}$ separations and angles: 2.100/2.134 \AA and $176 / 174^{\circ}$ for two independent molecules).

Experimental

A solution of 2.0 mmol of CuSO_{4} in water (3 ml) was mixed with a solution of 4.0 mmol of $\mathrm{NaN}(\mathrm{CN})_{2}$ in water $(10 \mathrm{ml})$ and with a solution of 4.0 mmol of ampym in ethanol $(10 \mathrm{ml})$. After standing for a few days, blue crystals were isolated (yield: ca 10%).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]$
$M_{r}=385.86$
Triclinic, $P \overline{1}$
$a=6.260(1) \AA$
$b=7.248(1) \AA$
$c=9.451(2) \AA$
$\alpha=105.29(3)^{\circ}$
$\beta=100.19(3)^{\circ}$
$\gamma=106.27(3)^{\circ}$
$V=382.2(1) \AA^{\circ}$

Data collection

Oxford Diffraction Xcalibur CCD diffractometer
ω scans
Absorption correction: analytical face-indexed (CrysAlisRED; Oxford Diffraction, 2003)
$T_{\min }=0.767, T_{\max }=0.891$
2818 measured reflections

$$
Z=1
$$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.676 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 2020
reflections

$$
\theta=3.1-29.2^{\circ}
$$

$\mu=1.45 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.27 \times 0.25 \times 0.14 \mathrm{~mm}$

1705 independent reflections 1636 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-8 \rightarrow 8$
$k=-9 \rightarrow 7$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}	$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0264 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$	$+0.2243 P]$
$w R\left(F^{2}\right)=0.064$	where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$S=1.04$	$(\Delta / \sigma)_{\max }<0.001$
1705 reflections	$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
115 parameters	$\Delta \rho_{\min }=-0.36 \mathrm{e} \AA^{-3}$
H-atom parameters constrained	

(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

The authors thank the Grant Agency of the Slovak Republic (grant Nos. VEGA 1/2449/05 and COSNET 545.03-P).

References

Albada, G. A. van, Mutikainen, I., Turpeinen, U. \& Reedijk, J. (2001). Acta Cryst. E57, m421-m423.
Albada, G. A. van, Quiroz-Castro, M. E., Mutikainen, I., Turpeinen, U. \& Reedijk, J. (2000). Inorg. Chim. Acta, 298, 221-225.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Batten, S. R., Harris, A. R., Jensen, P., Murray, K. S. \& Ziebell, A. (2000). J. Chem. Soc. Dalton Trans. pp. 3829-3836.
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Burčák, M., Potočňák, I., Baran, P. \& Jäger, L. (2004). Acta Cryst. C60, m601m604.
Jensen, P., Batten, S. R., Fallon, G. D., Hockless, D. C. R., Moubaraki, B., Murray, K. S. \& Robson, R. (1999). J. Solid State Chem. 145, 387-393.
Luo, J., Liu, B.-S., Zhou, X.-G., Weng, L.-H., Li, Y.-R. \& Wu, H.-X. (2004). Acta Cryst. C60, m520-m522.
Manson, J. L., Gu, J., Schlueter, J. A. \& Wang, H.-H. (2003). Inorg. Chem. 42, 3950-3955.
Manson, J. L., Lancaster, T., Chapon, L. C., Blundell, S. J., Schlueter, J. A., Brooks, M. L., Pratt, F. L., Nygren, C. L. \& Qualls, J. S. (2005). Inorg. Chem. 44, 989-995.
Mohamadou, A., van Albada, G. A., Kooijman, H., Wieczorek, B., Spek, A. L. \& Reedijk, J. (2003). New J. Chem. pp. 983-988.
Oxford Diffraction (2001). CrysAlisCCD. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2003). CrysAlisRED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Potočňák, I., Burčák, M., Massa, W. \& Jäger, L. (2002). Acta Cryst. C58, m523m528.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Van Meervelt, L. \& Uytterhoeven, K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 481-482.

